Cari Blog ini

Aplikasi HPF 20+db
 
 


 

1. Pendahuluan[kembali]

Common base configuration yaitu konfigurasi yang basisnya sama pada sisi masukan (input) dan sisi keluaran (output).Ketiga jenis Konfigurasi dasar tersebut diantaranya adalah Common Base (Basis Bersama), Common Collector (Kolektor Bersama) dan Common Emitter (Emitor Bersama). Nama “Common” atau “bersama” ini menunjukan kaki terminal yang dipakai bersama untuk INPUT  (masukan) atau OUTPUT (keluaran). Setiap konfigurasi memiliki respon yang berbeda-beda terhadap sinyal Input dalam rangkaiannya.

 

2. Tujuan[kembali]

  • Mampu menjelaskan dan memahami prinsip kerja inverting amplifier

  • Mengetahui karakteristik rangkaian penguat inverting sebagai aplikasi dari rangkaian Op-Amp.

  • Mampu mengaplikasikan  inverting amplifier 

 

 

3. Alat dan bahan[kembali]

A. Alat

 1. Osiloskop

    Osiloskop adalah komponen elektronika yang mempunyai kemampuan menyimpan electron-elektron selama waktu yang tidak tertentu. Osiloskop dilengkapi dengan tabung sinar katode. Peranti pemancar elektron memproyeksikan sorotan elektron ke layar tabung sinar katode.
    Spesifikasi:

    Pinout:

    Keterangan:


2. Voltmeter AC

Merupakan alat untuk mengukur tegangan pada suatu circuit. Dalam menggunakannya kita memparalelkan voltmeter dengan rangkaian yang ingin diukur besar tegangannya. Jika tegangan berupa tegangan DC maka pengalinya di set pada bagian DC, dan jika AC maka diset pada bagian AC. Hasil pada layar akan dikali dengan pengalinya terlebih dahulu, maka akan muncul nilai tegangan pada rangkaian 

Spesifikasi:

Pinout






Probes
1) Voltage

Merupakan alat yang menunjukkan besar tegangan tanpa menggunakan voltmeter ataupun multimeter.






Generator Daya
1. Sumber tegangan AC (Signal Generator)
                                         

Berfungsi sebagai sumber daya bagi sensor ataupun rangkaian. 
Spesifikasi
Input voltage: 5V-12V
Output voltage: 5V
Output Current: MAX 3A
Output power:15W
conversion efficiency: 96%


B. Bahan

1. Resistor
Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R). Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.
Spesifikasi

2. Kapasitor





Nilai kapasitor (104J) : 10 * 10^4 pF = 10^5 pF = 100nF; toleransi 5% = ± 95nF sampai 105nF
Kapasitor adalah komponen elektronika pasif yang dapat menyimpan muatan listrik dalam waktu sementara.
Cara menghitung nilai kapasitor :
1. Masukan 2 angka pertama langsung untuk nilai kapasitor.
2. Angka ke-3 berfungsi sebagai perpangkatan (10^n) nilai kapasitor.
3. Satuan kapasitor dalam piko farad.
4. Huruf terakhir menyatakan nilai toleransi dari kapasitor.

Daftar nilai toleransi kapasitor :
B = 0.10pF
C = 0.25pF
D = 0.5pF
E = 0.5%
F = 1%
G = 2%
H = 3%
J = 5%
K = 10%
M = 20%
Z = + 80% dan -20%

Spesifikasi

3. Op-Amp LM741
Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

Konfigurasi PIN LM741

Spesifikasi:




 

 

4. Dasar teori[kembali]

Adapun rangkaian HPF +20dB/dec adalah seperti pada gambar 226. Dari rangkaian terlihat bahwa sinyal input diserikan dengan kapasitor C, sehingga sinyal input yang berfrekuensi diatas frekuensi cut-off akan dilewatkan dan sebaliknya dibawah frekuensi cut-off akan diredam atau dilemahkan. Pelemahan terjadi karena reaktansi XC akan semakin besar apabila frekuensi semakin kecil seperti hubungan berikut.
                      
Apabila sinyal input semakin diperbesar frekuensi-nya maka tegangan di titik A dari gambar rangkaian HPF +20 dB/dec akan semakin besar atau mendekati besarnya Vi (ACL ≈ 1).


Rangkaian gambar 226 pada dasarnya adalah rangkaian amplifier karena memakai feedback negatif tetapi rangkaian filter ACL –nya sama dengan satu ( Acl  ≈1, butterworth filter). Dengan tegangan input Vi maka tegangan di titik A adalah:



Misalkan memakai op-amp ideal maka Ed=0 sehingga Vo = VA
Jadi,
Respons Frekuensinya

 Rangkaian penguat inverting adalah rangkaian elektronika yang berfungsi untuk memperkuat dan membalik polaritas sinyal masukan. Rangkaian penguat inverting menggunakan IC yang sering dipakai dan mudah dicari yaitu IC OpAmp LM741. Keluaran sensor dan tranduser pada umumnya mempunyai tegangan yang sangat kecil hingga mikro volt, sehingga diperlukan penguat dengan impedansi masukan rendah. Rangkaian penguat inverting merupakan rangkaian penguat pembalik dengan impedansi masukan sangat rendah. Rangkaian penguat inverting akan menerima arus atau tegangan dari tranduser sangat kecil dan akan membangkitkan arus atau tegangan yang lebih besar. Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 1, dimana sinyal masukannya dibuat melalui input inverting. Rangkaian ini adalah pengubah dari arus menjadi tegangan dan digerakkan oleh sumber tegangan dan bukan sumber arus. Tahanan sumber R1, bagian umpan baliknya berubah dan beberapa sifat umpan balik juga berubah.

 

5. Percobaan[kembali]

  • Prosedur Percobaan

  1. Buka aplikasi proteus
  2. Pilih komponen yang dibutuhkan untuk rangkaian. 
  3. Rangkai setiap komponen menjadi rangkaian sesuai gambar
  4. Jalankan simulasi rangkaian.
  • Rangkaian Simulasi



Video Simulasi


 

 

6. Download file[kembali]

 

Percobaan 1b
 
 


 

1. Foto hardware[kembali]

 

 

2. Prosedur[kembali]

1.Penggunaan Jembatan Wheatstone

a.       Hubungkan power supply 5V ke terminal input pada jembatan wheatstone

b.       Hubungkan Amperemeter pada rangkaian sebesar 0-100mA 

c.       Hubungkan Voltmeter pada rangkaian dengan multimeter  

d.       Hubungkan R1 sebesar 100Ω dan R3 sebesar 220Ω pada jembatan wheatstone

e.       Hubungkan masing-masing R2 ke Rv2 dan R4 ke Rv1 pada Potensiometer

f.       Hidupkan power supply, atur nilai resistansi pada R4 hingga nilai tegangan menunjukkan                           angka 0 pada multimeter

g.      Catat nilai arus yang tertera pada Amperemeter, kemudian matikan power supply

h.      Ukur nilai resistansi R4 dan R2 pada potensiometer menggunakan multimeter kemudian catat                     nilainya pada jurnal praktikum

 

3. Rangkaian simulasi dan prinsip kerja[kembali]

 

 
Prinsip Kerja : Sebuah rangkaian dengan tegangan pada BAT1 = 5V, R1 =  1000Ω,  dan R3 = 220Ω disusun menjadi rangkaian parallel menggunakan jembatan wheatstone dan diukur nilai resistansi R4 dan R2 dengan menggunakan potensiometer

4. Kondisi[kembali]

 Pengukuran potensiometer menggunakan Jembatan Wheatstone  

5. Video praktikum[kembali]

  • Rangkaian Gambar 3



 

 

6. Download file[kembali]

 

Percobaan 1a
 
 


 

1. Foto hardware[kembali]

  A. Amperemeter Dan Voltmeter


B. Potensiometer Dan Tahanan Geser

 

2. Prosedur[kembali]

1.Mengamati dan Memahami Simbol serta Data dari Alat Ukur

a. Ambil alat ukur seperti dibawah ini:

        ●       Voltmeter (model 2011, 2052)

        ●       Amperemeter (model 2011, 2013)

b. Amati simbol dan data yang tertera pada alat ukur tersebut

c. Gambarkan dan artikan simbol  serta  data  tersebut  dan  tuliskan karakteristik alat ukur berdasarkan hasil pengamatan pada Tabel 1.

2. Pengukuran Arus dan Tegangan Menggunakan Potensiometer dan Tahanan Geser Pada Rangkaian Seri

a.  Susun rangkaian seperti gambar 1

b. Hubungkan nilai R sebesar 220Ω, 550Ω, dan 1Ω k menggunakan poensiometer dan tahanan geser sesuaikan dengan nilai yang tertera pada jurnal praktikum   

c. Gunakan DC power supply sebesar 12V

d. Hidupkan power supply, ukur nilai resistansi, arus, serta nilai tegangannya 

e. Ulangi percobaan dengan mengganti nilai R menggunakan potensiometer dan tahanan geser 

3. Pengukuran Arus dan Tegangan Menggunakan Potensiometer dan Tahanan Geser Pada Rangkaian Parallel

a.  Susun rangkaian seperti gambar 2

b. Hubungkan nilai R sebesar 220Ω, 550Ω, dan 1Ω kmenggunakan poensiometer dan tahanan geser sesuaikan dengan nilai yang tertera pada jurnal praktikum   

c. Gunakan DC power supply sebesar 12V

d. Hidupkan power supply, ukur nilai resistansi, arus, serta nilai tegangannya 

e. Ulangi percobaan dengan mengganti nilai R menggunakan potensiometer dan tahanan geser 

 

3. Rangkaian simulasi dan prinsip kerja[kembali]

 

Gambar 1. Rangkaian Seri

Gambar 2. Rangkaian Parallel

4. Kondisi[kembali]

a. Pengukuran Arus dan Tegangan Menggunakan Potensiometer dan Tahanan Geser Pada Rangkaian Seri

   b. Pengukuran Arus dan Tegangan Menggunakan Potensiometer dan  Tahanan Geser Pada Rangkaian Parallel

 

5. Video praktikum[kembali]

 

 Rangkaian Seri


 

 

 

 


 

 

 

 

 Rangkaian Paralel

 


 

 

 

 

6. Download file[kembali]

Rangkaian seri proteus [klik disini]

Rangkaian paralel proteus [klik disini]



 

1. Pendahuluan[kembali]

1. Mempersiapkan segala kebutuhan pra praktikum dan mengumpulkan Tugas pendahuluan         selambat-lambatnya H-1 Praktikum jam 6 sore 

 2. Responsi dilakukan diawal praktikum selama 15 menit

 3. Praktikum dilakukan selama 1x dalam seminggu dengan durasi 90 menit                     

 4. Laporan Akhir dikumpulkan sesuai dengan kesepakatan bersama Asisten Praktikum (Format disesuaikan dengan isi blog)


 

2. Tujuan[kembali]

1. Dapat menjelaskan karakteristik Voltmeter dan Amperemeter dari simbol- simbol alat ukur tersebut


2. Dapat menentukan posisi pembacaan dan batas ukur yang tepat dari alat ukur saat melakukan pengukuran.                                                                           


3. Dapat menjelaskan pengaruh Potensiometer dan Tahanan Geser terhadap arus dan yang mengalir pada rangkaian.                                                                        


4. Dapat memahami prinsip kerja Jembatan Wheatstone. 


 

3. Alat dan bahan[kembali]

1. Instrument


Multimeter

Amperemeter


Voltmeter



2. Module


  Jumper



B. Bahan



Resistor

Potensiometer

Tahanan Geser

 

4. Tugas Pendahuluan[kembali]


 

5. Dasar teori[kembali]

A. Resistor

Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
Tabel Kode Warna Resistor

Perhitungan untuk Resistor dengan 4 Gelang warna :

Cara menghitung nilai resistor 4 gelang


Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)

Masukkan angka langsung dari kode warna Gelang ke-2

Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)

Merupakan Toleransi dari nilai Resistor tersebut


Contoh :


Gelang ke 1 : Coklat = 1

Gelang ke 2 : Hitam = 0

Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105

Gelang ke 4 : Perak = Toleransi 10%

Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.


Perhitungan untuk Resistor dengan 5 Gelang warna :


Cara Menghitung Nilai Resistor 5 Gelang Warna


Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)

Masukkan angka langsung dari kode warna Gelang ke-2

Masukkan angka langsung dari kode warna Gelang ke-3

Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)

Merupakan Toleransi dari nilai Resistor tersebut


Contoh :


Gelang ke 1 : Coklat = 1

Gelang ke 2 : Hitam = 0

Gelang ke 3 : Hijau = 5

Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105

Gelang ke 5 : Perak = Toleransi 10%

Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.




Contoh-contoh perhitungan lainnya :


Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi

Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi


Cara menghitung Toleransi :

2.200 Ohm dengan Toleransi 5% =

2200 – 5% = 2.090

2200 + 5% = 2.310

ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm


B. Potensiometer


    Potensiometer merupakan resistor variabel yang nilai resistansinya dapat diubah dengan cara memutar tuasnya untuk mendapatkan variasi arus. Potensiometer biasanya digunakan untuk mengendalikan perangkat elektronik. Salah satu contohnya seperti pengatur volume pada peralatan audio.

       Potensiometer mempunyai 3 terminal, yaitu terminal A, terminal B, dan wiper. Dimana prinsip kerjanya ketika terminal A dan wiper dihubungkan maka nilai resistansinya semakin besar jika tuasnya diputar ke kanan. Ketika terminal B dan wiper dihubungkan maka nilai resistansinya semakin besar jika tuasnya diputar ke kiri. Sedangkan ketika terminal A dan B dihubungkan maka pada potensiometer akan menunjukkan nilai resistansi maksimum. Nilai resistansi ini akan selalu tetap dan merupakan nilai resistansi total dari potensiometer.






C. Tahanan Geser

Tahanan geser merupakan resistor variabel yang nilai resistansinya dapat diubah dengan cara menggeser tuasnya untuk mendapatkan variasi arus. Tahanan geser biasanya digunakan untuk mengendalikan perangkat elektronika. Salah satu contohnya seperti pada radio.
Tahanan geser mempunyai 3 terminal, yaitu terminal A, terminal B, dan wiper. Dimana prinsip kerjanya ketika terminal A dan wiper dihubungkan maka nilai resistansinya semakin besar jika tuasnya digeser ke kanan. Ketika terminal B dan wiper dihubungkan maka nilai resistansinya semakin besar jika tuasnya digeser ke kiri. Sedangkan ketika terminal A dan B dihubungkan maka  akan menunjukkan nilai resistansi maksimum. Nilai resistansi  ini akan selalu tetap dan merupakan nilai resistansi total dari tahanan geser.


D. Jembatan Wheatstone

Rangkaian jembatan wheatstone secara luas telah digunakan dalam beberapa pengukuran nilai suatu komponen seperti resistansi, induktansi, dan kapasitansi.

Karena rangkaian jembatan wheatstone hanya membandingkan antara nilai komponen yang belum diketahui dengan komponen standar yang telah diketahui nilainya, maka akurasi pengukurannya menjadi hal yang sangat penting, terutama pada pembacaan pengukuran perbandingannya yang hanya didasarkan pada sebuah indikator nol pada kesetimbangan jembatan yang terlihat pada galvanometer.

Metode jembatan wheatstone dapat digunakan untuk mengukur hambatan listrik. Cara ini tidak memerlukan alat ukur voltmeter dan amperemeter, cukup satu galvanometer untuk melihat apakah ada arus listrik yang melalui suatu rangkaian. Prinsip dari rangkaian jembatan wheatstone diperlihatkan pada Gambar 1.3: 


        Gambar 1.3. Rangkaian Jembatan Wheatstone

Keterangan Gambar:

S                     : Saklar penghubung

G                    : Galvanometer

V                     : Sumber tegangan

Rs                   : Resistor variabel

Ra dan Rb       : Hambatan yang sudah diketahui nilainya

Rx                   : Hambatan yang akan ditentukan nilainya



 

6. Percobaan[kembali]


          BAHAN PRESENTASI UNTUK MATA KULIAH     TEKNIK ELEKTRO                 Oleh : AHMAD FADIL DENDRA 2310953019 Dosen Pengampu : Darwis...